Prime product pp(n) >/ 5*n for every natural n >/ 5

Terminology:

  •  N := {1 2 3 ...} -- the set of all natural numbers
  •  P := {2  3  5  7  11  13  17 ... } -- the set of all primes
  •  pp(x) := prod{ p in P: p \< x}. -- the product of all primes that are  \<  x
========================================================

The product of the empty set, i.e. of zero elements, is equal to 1 (by a definition). This starts the list below:

  • pp(1) = 1
  • pp(2) = 2
  • pp(3) = 2*3 = 6
  • pp(4) = pp(3) = 6
  • pp(5) = 2*3*5 = 30
  • pp(6) = pp(5) = 30
  • pp(7) = 2*3*5*7 = 210
  • pp(10) = pp(9) = pp(8) = pp(7) = 210
  • pp(11) = 2*3*5*7*11 = 2310

    ========================================================


    Theorem   For every  n  in  N

    •  pp(n) >/ n
    •  n >/ 3   ==>   pp(n)  >/  n + 2
    •  n >/ 5   ==>   pp(n)  >/  5*n
    Proof  A simple direct computation shows that the theorem holds for  n = 1 2 3 4 5.  For instance

                          pp(5) = 2*3*5 > 5*5 > 5+2 > 5
    Great!

    In general

                          n >/5    ==>    5*n  >  n+2  >  n

    -- the last of the three theorem's statements implies the previous two for every natural  n >/5.  Thus, in the view of the theorem holding already for  n = 1 2 3 4,  it is enough to prove that last statement only.

    That last statement, as noted above, holds for  n=5.  Let's assume now that natural n > 5,  and that that statement holds for every natural  m (in place of  n)  such that. 5 \< m < n  (a proof by induction).

    Thus (the induction assumption)  pp(n-1) >/ 5*(n-1).  Consider special cases:

    Case A:      pp(n-1) = 5*(n-1)

    we see that  n-1  is not divisible by. 5, and that  p | n-1  for every prime  p =/= 5  such that  p \< n-1. Thus  n  is not divisible by any prime  p=/=5 such that  p \< n-1.

    It follows that there exists uniquely non-negative intger  k and natural q  such that

                               n =  5^k * q

    and  q is not divisible by any prime  \<  n-1, i.e. by any prime  p < n.  Then either  q  is divisible by a prime  t  >/  n  hence  t >/ n,  or  t=1. The first case implies  n = q = t  is a prime hence:

             pp(n)  =  pp(n-1) + n  =  5*(n-1) + n  =  6*n - 5  >/  5*n

    and the theorem holds;

    or else  q=1, and

                                      n  =  5^k

    Then  4 | n-1  while  4 = 2^2  does not divide  pp(n-1) = 5*(n-1) -- a contradiction.

    Summary of Case A:  then n  is a prime, and  pp(n) >/ 5*n -- the theorem holds in Case A.

    -----

    Case B:      pp(n-1) = 5*(n-1) + r                  where  1 \< r < 5

    This means that  pp(n-1)  is not divisible by  5. hence  n-1 < 5, and  n < 6, i.e.  n \< 5. Then the theorem holds.

    Summary of Case B:
      then  n \< 5 -- the theorem holds in Case B.

    -----

    Case C:      pp(n-1)  >/  5*n

    This is the remining case. Then

                 pp(n)  >/  pp(n-1)  >/  5*n

    Summary of Case C:
      the theorem holds in Case C.

    The theorem holds in all there cases A  C.  End of Proof




    Comments

    Popular posts from this blog

    2-power teams, and their leaders (AoT, nr.1)

    Even, odd, and square integers (AoT, nr.0)